Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(9QPT_1)}(2) \setminus P_{f(7OYH_1)}(2)|=94\),
\(|P_{f(7OYH_1)}(2) \setminus P_{f(9QPT_1)}(2)|=38\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:11001100111111111111111111110111100101111010101001110100100010011000101101110100000111010101010010010110101000101111011011000110100000011111111000101000011001100100110001111010111000110111010010000111001100101000010110111110110001010111000100100110111010001001110011010111000001100010111111101111101100001100010010101110100101000011101010011001101111111110111001010111011111111101111011110100101111111111110011111001001110001110010000110100111111111011111111101101010001010110011101111101011101011011101100101111010011000000000000011000100111011101111111100100111000011110010110110110000110010000100000010011011111101010001111101011000110000101110011111001001111110111110110101101011001011000100100011011100100101101011000111010101101011111100100010011100010011001010010101101101110010010100101011110100000100101010000111010111011110001011011101110111111001011000011000011110110111111111110001011101111111111111110010110001010111100111010011111011101100010011011101101010111100111111111111001110110011101111111110111101111111110011101001101001010010000000
Pair
\(Z_2\)
Length of longest common subsequence
9QPT_1,7OYH_1
132
7
9QPT_1,2HWT_1
247
4
7OYH_1,2HWT_1
209
3
Newick tree
[
2HWT_1:12.47,
[
9QPT_1:66,7OYH_1:66
]:60.47
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1563
}{\log_{20}
1563}-\frac{508}{\log_{20}508})=266.\)
Status
Protein1
Protein2
d
d1/2
Query variables
9QPT_1
7OYH_1
330
244
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]