Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(4LMD_1)}(2) \setminus P_{f(2HAP_1)}(2)|=108\),
\(|P_{f(2HAP_1)}(2) \setminus P_{f(4LMD_1)}(2)|=8\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:100100100111010111001110000110111000000101100011000010110001111001111101000010110000001001011100110000110011000101110001011100001010
Pair
\(Z_2\)
Length of longest common subsequence
4LMD_1,2HAP_1
116
2
4LMD_1,7NSJ_1
138
3
2HAP_1,7NSJ_1
108
2
Newick tree
[
4LMD_1:66.66,
[
2HAP_1:54,7NSJ_1:54
]:12.66
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{152
}{\log_{20}
152}-\frac{20}{\log_{20}20})=48.0\)
Status
Protein1
Protein2
d
d1/2
Query variables
4LMD_1
2HAP_1
66
36.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]