Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(9JGI_1)}(2) \setminus P_{f(6ESS_1)}(2)|=107\),
\(|P_{f(6ESS_1)}(2) \setminus P_{f(9JGI_1)}(2)|=47\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:100110001010100000101110101001010011000010111100110110000010101001110101111001001000001011000011110000010101011001010000110001110001000110111110001011001001100111010010000010000110010000100010101101010101010100101111010101110000001111101000000111100001000000111000000000
Pair
\(Z_2\)
Length of longest common subsequence
9JGI_1,6ESS_1
154
4
9JGI_1,7WAK_1
156
4
6ESS_1,7WAK_1
216
3
Newick tree
[
7WAK_1:99.27,
[
9JGI_1:77,6ESS_1:77
]:22.27
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{429
}{\log_{20}
429}-\frac{159}{\log_{20}159})=80.2\)
Status
Protein1
Protein2
d
d1/2
Query variables
9JGI_1
6ESS_1
99
77
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]