Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(9LOT_1)}(2) \setminus P_{f(1CVB_1)}(2)|=108\),
\(|P_{f(1CVB_1)}(2) \setminus P_{f(9LOT_1)}(2)|=70\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1001111011010101011001111001101000000100110001101000100100101001110110110100001110001100101111100000110100100100001001001011110011111101110000111110000001010001100101101011011011110011011011010001000000000111110010011001001100000111100010001110011011011010011010001010101010101101101110010000001000011100110011001010100010110011111100000000
Pair
\(Z_2\)
Length of longest common subsequence
9LOT_1,1CVB_1
178
3
9LOT_1,4AYF_1
152
4
1CVB_1,4AYF_1
148
5
Newick tree
[
9LOT_1:85.47,
[
4AYF_1:74,1CVB_1:74
]:11.47
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{599
}{\log_{20}
599}-\frac{259}{\log_{20}259})=95.8\)
Status
Protein1
Protein2
d
d1/2
Query variables
9LOT_1
1CVB_1
123
108
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]