Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(9JAP_1)}(2) \setminus P_{f(8HWL_1)}(2)|=35\),
\(|P_{f(8HWL_1)}(2) \setminus P_{f(9JAP_1)}(2)|=59\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:11000000000011110100101110010110010001000000010011001011111111100001011100111100111010000100100111000010010000011110011100110000110110000010010000101101010010000000110101100100101101001100000100101010101000000010011010000010100110001000101010010111111001001010011100001000011100010001000011111011011101100111001000000001111001010011000001000011011111010000100101000100011100010011001000001111001101001100111001000101010010001010001001001100111110000001000001100000010111000011000000011010100100001001000010011011001111100111000001001000100010111101100011000100100111000000001111111011111110011001110001001010000110011110011100000010011110110000110011011001011000100001001100110101100111000101001000100111011001011100110111100010100011010011100000000010000101011101000100101010110011011100100000110000100010101010001100011001100000101100100011101100101010111001000010100
Pair
\(Z_2\)
Length of longest common subsequence
9JAP_1,8HWL_1
94
5
9JAP_1,3LDG_1
161
4
8HWL_1,3LDG_1
149
4
Newick tree
[
3LDG_1:85.34,
[
9JAP_1:47,8HWL_1:47
]:38.34
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{2047
}{\log_{20}
2047}-\frac{869}{\log_{20}869})=285.\)
Status
Protein1
Protein2
d
d1/2
Query variables
9JAP_1
8HWL_1
367
316.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]