Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(4WFE_1)}(2) \setminus P_{f(2PKR_1)}(2)|=70\),
\(|P_{f(2PKR_1)}(2) \setminus P_{f(4WFE_1)}(2)|=90\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:10011001110110110111111101100001111111111011011111011001000010001101000110101010000111110011011111101000000000001101101111010110011010111000110110110111111111111111100110010011101011110101110110110111111110111110101110010010010110111101001111001111010000110011111111111101101100110110110000000101110
Pair
\(Z_2\)
Length of longest common subsequence
4WFE_1,2PKR_1
160
4
4WFE_1,3BWK_1
184
3
2PKR_1,3BWK_1
156
3
Newick tree
[
4WFE_1:88.77,
[
2PKR_1:78,3BWK_1:78
]:10.77
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{664
}{\log_{20}
664}-\frac{299}{\log_{20}299})=101.\)
Status
Protein1
Protein2
d
d1/2
Query variables
4WFE_1
2PKR_1
129
115
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]