Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(9GMA_1)}(2) \setminus P_{f(2LWC_1)}(2)|=310\),
\(|P_{f(2LWC_1)}(2) \setminus P_{f(9GMA_1)}(2)|=0\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:110010100101101011110010100110010110111000011111011110101101000001110010000110101011100001011000000111110100111000010101111011101101001100011000101111001000100101101001001000010110111110010010000010011010101110011000100011100011001100101110000101011010000001100110010001010010010000001001111010111000011000000101100110001100010000011000101100110000010000101001000100000110011010100010001000010010001100001101000011000011011001001001101010010011001010000100111110001011011000100100110011100000011001001100110000110010110101001000100000100110010000100001001011000101000110101001100010100010010001001010111111100010010000100110000100010011000001010000111000010001001001011000011111001111110010001010011010110111001111101011010100100010010110101001000110100000111100000010000010111110110000101101000111000101010100100100110011100101110001010100100000010001001000000000001010001001001110101110001100100100010010011011000101100101111110001000001000000100000010001111101100010100000111100010100010001001000000100010000100001001110100000000011001100100111010101010100000010011010000100100011100101001000100100000010001101011101110110001100010000110101111001000111110111100001001101000100100010111110001000100011000011011001010110100010100001110000110110001000000101100110110110101101010100001111011000000000110000101001110100010101011001100110011000001010101001001110100111001011101101111110010000001010010100111100110101001101101000101011111100101001000011001100000101111011100111001100101
Pair
\(Z_2\)
Length of longest common subsequence
9GMA_1,2LWC_1
310
3
9GMA_1,1ULF_1
218
3
2LWC_1,1ULF_1
114
2
Newick tree
[
9GMA_1:15.17,
[
1ULF_1:57,2LWC_1:57
]:94.17
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1487
}{\log_{20}
1487}-\frac{5}{\log_{20}5})=408.\)
Status
Protein1
Protein2
d
d1/2
Query variables
9GMA_1
2LWC_1
501
251.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]