Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(7QYK_1)}(2) \setminus P_{f(2BCX_1)}(2)|=67\),
\(|P_{f(2BCX_1)}(2) \setminus P_{f(7QYK_1)}(2)|=67\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:0100000100101110010001110001011001101001100101100110100110010100010100010010110001100010001100110001011000101110001000100100010000
Pair
\(Z_2\)
Length of longest common subsequence
7QYK_1,2BCX_1
134
4
7QYK_1,2BZJ_1
182
4
2BCX_1,2BZJ_1
178
3
Newick tree
[
2BZJ_1:96.46,
[
7QYK_1:67,2BCX_1:67
]:29.46
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{278
}{\log_{20}
278}-\frac{130}{\log_{20}130})=46.2\)
Status
Protein1
Protein2
d
d1/2
Query variables
7QYK_1
2BCX_1
57
54
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]