Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(6YGU_1)}(2) \setminus P_{f(4XNJ_1)}(2)|=64\),
\(|P_{f(4XNJ_1)}(2) \setminus P_{f(6YGU_1)}(2)|=121\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:100111000001000100000011111001000100101101101100010011111110100001000010111010000110111010000101000100000111111110000011010111011001011001010110000110100100000110011010001001110101100101001010011001011000111011000110110
Pair
\(Z_2\)
Length of longest common subsequence
6YGU_1,4XNJ_1
185
3
6YGU_1,1HMV_1
199
4
4XNJ_1,1HMV_1
160
4
Newick tree
[
6YGU_1:10.85,
[
4XNJ_1:80,1HMV_1:80
]:20.85
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{702
}{\log_{20}
702}-\frac{219}{\log_{20}219})=135.\)
Status
Protein1
Protein2
d
d1/2
Query variables
6YGU_1
4XNJ_1
171
125.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]