Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(9BXM_1)}(2) \setminus P_{f(7PLN_1)}(2)|=88\),
\(|P_{f(7PLN_1)}(2) \setminus P_{f(9BXM_1)}(2)|=97\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:110000000000111101001110000100000010000010010001111011110100111000001000110110101010101100000101100001110110010001011000010101000011000101100010010110101001010100001111001100100101110010001000101110010010000010011111010001001001011001101010111000111110000001000100101101100
Pair
\(Z_2\)
Length of longest common subsequence
9BXM_1,7PLN_1
185
6
9BXM_1,9MKO_1
162
4
7PLN_1,9MKO_1
183
3
Newick tree
[
7PLN_1:95.38,
[
9BXM_1:81,9MKO_1:81
]:14.38
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{544
}{\log_{20}
544}-\frac{271}{\log_{20}271})=77.3\)
Status
Protein1
Protein2
d
d1/2
Query variables
9BXM_1
7PLN_1
99
99
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]