Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(6OKT_1)}(2) \setminus P_{f(4EQU_1)}(2)|=121\),
\(|P_{f(4EQU_1)}(2) \setminus P_{f(6OKT_1)}(2)|=40\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:101010000110110101110011101101000000000000011000111001111001000010010111110010101000010011000000100101010111000100010000001110100000100010101001000010101000011010010010101010110011100011100000100001111000110101100100001000000110000001001001111010001100100001000100001101000000101010011000100111110111111100111000001000010010010000000000111010110001101010000000000001100001001001101001001010101000001011100101000111010010010100001100101100010011011110010010001111000010010110010100001010110000010110010010001001001010111000000000010100100100001010110110011110000111010011100001011100001001000100100001001010011011100100100100000010010010000001101010010100010111001010000110100001100001110101000000011100100010001000000000101011101000100101001000101100101011000011010010110101010010001011011100000011001000010101000110011000001000110100100001010001011001100001010110100001111010
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1178
}{\log_{20}
1178}-\frac{302}{\log_{20}302})=231.\)
Status
Protein1
Protein2
d
d1/2
Query variables
6OKT_1
4EQU_1
291
195.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]