Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(4WEN_1)}(2) \setminus P_{f(2DIR_1)}(2)|=116\),
\(|P_{f(2DIR_1)}(2) \setminus P_{f(4WEN_1)}(2)|=40\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:11010000000000001010110110111011001001100101010100111110000111011011101110111000011011100101000001110111110010100110101010011111011100101011011101100110111101001011011110001110100001110100101010011011100000100001011011011111010010101001100000101110111000000010101010101110101
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{373
}{\log_{20}
373}-\frac{98}{\log_{20}98})=84.7\)
Status
Protein1
Protein2
d
d1/2
Query variables
4WEN_1
2DIR_1
99
67
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]