Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(9BLO_1)}(2) \setminus P_{f(7NYM_1)}(2)|=89\),
\(|P_{f(7NYM_1)}(2) \setminus P_{f(9BLO_1)}(2)|=35\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:111010101101001010001110110100000111010000011010001000111100000101011010101010011000001011001010111011000101100011100100100110000000100001100000000100111001
Pair
\(Z_2\)
Length of longest common subsequence
9BLO_1,7NYM_1
124
3
9BLO_1,1OIE_1
184
3
7NYM_1,1OIE_1
234
4
Newick tree
[
1OIE_1:11.13,
[
9BLO_1:62,7NYM_1:62
]:54.13
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{219
}{\log_{20}
219}-\frac{63}{\log_{20}63})=51.8\)
Status
Protein1
Protein2
d
d1/2
Query variables
9BLO_1
7NYM_1
62
43.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]