Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(5HBP_1)}(2) \setminus P_{f(5YHR_1)}(2)|=73\),
\(|P_{f(5YHR_1)}(2) \setminus P_{f(5HBP_1)}(2)|=53\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1000000000001010001110010100100111011011010010001000110101111011000111101000011100011000000100111111110111100110110011111110000
Pair
\(Z_2\)
Length of longest common subsequence
5HBP_1,5YHR_1
126
3
5HBP_1,5YQR_1
159
3
5YHR_1,5YQR_1
177
3
Newick tree
[
5YQR_1:90.06,
[
5HBP_1:63,5YHR_1:63
]:27.06
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{224
}{\log_{20}
224}-\frac{97}{\log_{20}97})=41.1\)
Status
Protein1
Protein2
d
d1/2
Query variables
5HBP_1
5YHR_1
50
44.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]