Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(9IVP_1)}(2) \setminus P_{f(6YUN_1)}(2)|=124\),
\(|P_{f(6YUN_1)}(2) \setminus P_{f(9IVP_1)}(2)|=46\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1100000011101000110010010001111111001100110110110000101111011010110001001101110010101101110011010110111001101110110101101110011010100001101101110110101101110011010100011001101110010001101101111100010101010010101000100001110011001100000000010011010000111101001001000010011011001101000100011010011000001010011000010001011001100100100111100111001100001101011010010001101100
Pair
\(Z_2\)
Length of longest common subsequence
9IVP_1,6YUN_1
170
6
9IVP_1,7BIG_1
176
2
6YUN_1,7BIG_1
112
3
Newick tree
[
9IVP_1:94.51,
[
6YUN_1:56,7BIG_1:56
]:38.51
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{505
}{\log_{20}
505}-\frac{135}{\log_{20}135})=109.\)
Status
Protein1
Protein2
d
d1/2
Query variables
9IVP_1
6YUN_1
123
85
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]