Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(8ZFA_1)}(2) \setminus P_{f(5JJX_1)}(2)|=112\),
\(|P_{f(5JJX_1)}(2) \setminus P_{f(8ZFA_1)}(2)|=62\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1100101000111000011000100000100100011111100010001100101001010000000000111000010011111011101010110010100100111111110011101011111001100011010100000001000110010010011010011000011000100011100010100101011011100000001100100101111110000000100110010011000110010111110000111001111000100011011000010010101100101001001100011010010101000001010001000010011000001100101000011
Pair
\(Z_2\)
Length of longest common subsequence
8ZFA_1,5JJX_1
174
3
8ZFA_1,7KIX_1
190
4
5JJX_1,7KIX_1
172
3
Newick tree
[
8ZFA_1:92.72,
[
5JJX_1:86,7KIX_1:86
]:6.72
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{675
}{\log_{20}
675}-\frac{314}{\log_{20}314})=99.8\)
Status
Protein1
Protein2
d
d1/2
Query variables
8ZFA_1
5JJX_1
129
118
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]