Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(3HIT_1)}(2) \setminus P_{f(2DRX_1)}(2)|=158\),
\(|P_{f(2DRX_1)}(2) \setminus P_{f(3HIT_1)}(2)|=0\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1110010101000100001100100010010100110011110011111011010101001010111000010111011000000101001011010000100111010110000011010001010011110000111110011001001011101000011111111011101101001001110010010010111001111000111100110010011100111100011111010100110101111101000
Pair
\(Z_2\)
Length of longest common subsequence
3HIT_1,2DRX_1
158
3
3HIT_1,8VNQ_1
162
3
2DRX_1,8VNQ_1
16
1
Newick tree
[
3HIT_1:92.26,
[
2DRX_1:8,8VNQ_1:8
]:84.26
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{289
}{\log_{20}
289}-\frac{30}{\log_{20}30})=85.9\)
Status
Protein1
Protein2
d
d1/2
Query variables
3HIT_1
2DRX_1
108
56
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]