Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(8XAC_1)}(2) \setminus P_{f(4QRD_1)}(2)|=49\),
\(|P_{f(4QRD_1)}(2) \setminus P_{f(8XAC_1)}(2)|=115\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:11100100101101011110110000011110110000101100000010100111010110000100101110111101000111011000011110100110000011101001111111010110101010010110111001001000111001101101111110111100111010111010110110111101101011111110101011100111100110100110111110100110111111101010111101001111010101010101011001110110011101001101111101001101111011101010100010011111011101010011110001100111011000111111111111111010011100101011001001111011111111110110110001001011101011011111101101110000000
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1014
}{\log_{20}
1014}-\frac{467}{\log_{20}467})=143.\)
Status
Protein1
Protein2
d
d1/2
Query variables
8XAC_1
4QRD_1
184
169
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]