Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(7DZX_1)}(2) \setminus P_{f(4ICN_1)}(2)|=163\),
\(|P_{f(4ICN_1)}(2) \setminus P_{f(7DZX_1)}(2)|=13\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:0010100000111100001001100100110001100000111111001011011010100100010011111001101100000011011111001000000111100100111010010100011111000000001100010100010000100100111101010010100100111001010101000001101100110110110111011111010010011110000101100001101111100110101001110000010100110011011000000100101001100000101010001101101001011101101001101011000010001100011000101001000110100100101001010011101001001111001011000001100101011110000100011100001001100001011000100010011001001101100011100011010011100100111101011011101011000001100001010101101011100000011110011001100001100100101101010011110110110000001111001100001111101001010101000100110001101111001000000011111110100000000110110110001110010111000110000011110010101000111101000010001010100000001110010100010011011110000000011101001000111001111010011101001000011001110010110111100010011011100110100101101111110001110000111110100110111111101111101100101111000110000011100100111010001000101110100110001011001100100011110011001100101101010100110101001000100011011010101011100100011100001010101001101100110111110100111000010011110001010110011110010011100001001011000001101000111111000100110101001000100010000010101101011010110100010010011001000110100110000010101000101011110101101100101010001011110011100000000
Pair
\(Z_2\)
Length of longest common subsequence
7DZX_1,4ICN_1
176
4
7DZX_1,7UYM_1
200
4
4ICN_1,7UYM_1
166
4
Newick tree
[
7DZX_1:97.63,
[
4ICN_1:83,7UYM_1:83
]:14.63
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1549
}{\log_{20}
1549}-\frac{300}{\log_{20}300})=322.\)
Status
Protein1
Protein2
d
d1/2
Query variables
7DZX_1
4ICN_1
408
252.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]