Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(8WSS_1)}(2) \setminus P_{f(2ODO_1)}(2)|=83\),
\(|P_{f(2ODO_1)}(2) \setminus P_{f(8WSS_1)}(2)|=84\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:110010100011100001100010001001100101111111001000110010110011000000000011100001001111101110101011001010010011111111001110101111100110001101010000000100011001001001101001100001100010001110001010010101101110000000110010110111101110000111100001001010101100100001100001111100001100010001101001001100000011101000100100000000100010000000010111011001110001000111
Pair
\(Z_2\)
Length of longest common subsequence
8WSS_1,2ODO_1
167
4
8WSS_1,3RHH_1
159
3
2ODO_1,3RHH_1
146
4
Newick tree
[
8WSS_1:84.17,
[
3RHH_1:73,2ODO_1:73
]:11.17
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{711
}{\log_{20}
711}-\frac{354}{\log_{20}354})=97.6\)
Status
Protein1
Protein2
d
d1/2
Query variables
8WSS_1
2ODO_1
125
124.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]