Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(9BAA_1)}(2) \setminus P_{f(4HSF_1)}(2)|=195\),
\(|P_{f(4HSF_1)}(2) \setminus P_{f(9BAA_1)}(2)|=24\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:110000000000001010000001100110000101000010001110100110001101011010010100001001011101100111010110100001100101111101110001101111001000110110110111000100100110111111011011001000001110111110110001101111011001111110101011100110100100101101111111110111000001110011101000111000001101110110000110110011010010011011010111001111111111010000111101111110111101100110010001100010100111001011001001110000000000010011000100111010100101111111111111111001101010110111101111011011001101011100111100011011011000010000001110101010100101001100111001010110100111110010100011011101001001011101001001010110001111000111101010001011000101001101101101001100111000011000110100100001111011100101111001000100100001001101100010111110010011000010110010110010000111101001011000000110
Pair
\(Z_2\)
Length of longest common subsequence
9BAA_1,4HSF_1
219
3
9BAA_1,5FSA_1
138
4
4HSF_1,5FSA_1
211
3
Newick tree
[
4HSF_1:11.58,
[
9BAA_1:69,5FSA_1:69
]:48.58
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{879
}{\log_{20}
879}-\frac{129}{\log_{20}129})=210.\)
Status
Protein1
Protein2
d
d1/2
Query variables
9BAA_1
4HSF_1
264
154.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]