Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(8WHZ_1)}(2) \setminus P_{f(6ITM_1)}(2)|=168\),
\(|P_{f(6ITM_1)}(2) \setminus P_{f(8WHZ_1)}(2)|=37\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:001000100110010001001100001101000001000010010011001011100000110101100100101010101100010011000000010011001001000101001001000111011100111001000001111001000110010110000111000110100000010010100010110100000101100100010010110001010101011010100101110111011101110110010010111100101010011100110100110010011101111010011100011001101001100101101101010111000101001101000110100011011011110011001100111011010110100100111101010000000101110011011101110011001011110101100011001101000111110111000000011011010000011000000100101001100110001110000100000110011011011000110111001111001010111001011101100000001111000101010
Pair
\(Z_2\)
Length of longest common subsequence
8WHZ_1,6ITM_1
205
4
8WHZ_1,3VLD_1
160
4
6ITM_1,3VLD_1
179
6
Newick tree
[
6ITM_1:10.04,
[
8WHZ_1:80,3VLD_1:80
]:21.04
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{837
}{\log_{20}
837}-\frac{240}{\log_{20}240})=164.\)
Status
Protein1
Protein2
d
d1/2
Query variables
8WHZ_1
6ITM_1
211
144
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]