Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(2BYY_1)}(2) \setminus P_{f(6ZXC_1)}(2)|=83\),
\(|P_{f(6ZXC_1)}(2) \setminus P_{f(2BYY_1)}(2)|=62\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1010000000101001110111110011000001110100100110100010001100011101010001110001101100101011101001110111010100001011111101110101011110110110110111101100111011010110110101100010010100100110110010110001111111001010110010111110000000100100000100011111111111110010011101101010111011000110111101011100101110110011001000100011101001111001110001110100110100111111001100111100111110101001000111101100000001001100011111001011100100
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{736
}{\log_{20}
736}-\frac{318}{\log_{20}318})=114.\)
Status
Protein1
Protein2
d
d1/2
Query variables
2BYY_1
6ZXC_1
142
125.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]