Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(8UMZ_1)}(2) \setminus P_{f(6ELR_1)}(2)|=63\),
\(|P_{f(6ELR_1)}(2) \setminus P_{f(8UMZ_1)}(2)|=113\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:10000001010110001011001111101000101001101111000100000101011100000110101011000101101100000000011101101100001111010110100011110101100101100010111101010010111010100011010011010001010011010001000001111100111010000101010110100010000000
Pair
\(Z_2\)
Length of longest common subsequence
8UMZ_1,6ELR_1
176
3
8UMZ_1,4RXR_1
172
6
6ELR_1,4RXR_1
160
4
Newick tree
[
8UMZ_1:89.21,
[
4RXR_1:80,6ELR_1:80
]:9.21
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{531
}{\log_{20}
531}-\frac{230}{\log_{20}230})=86.2\)
Status
Protein1
Protein2
d
d1/2
Query variables
8UMZ_1
6ELR_1
112
96
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]