Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(4XRG_1)}(2) \setminus P_{f(1GKA_1)}(2)|=150\),
\(|P_{f(1GKA_1)}(2) \setminus P_{f(4XRG_1)}(2)|=43\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:011100010111111111011010111100011100001111010001001101011011001100000001111110111101101010100001011011000111010011011111010101010100001100011110000111001100011011110111001110111011101001000001101110111011011000000101101101110010101110011011011110100111001010001011110110111000100101011100111100000101101101001110110010000100100011101001110100000101100001101100111110101001010100101000001110001011010011111111110010111101001010001010010111111100010111101111100100001101001110
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{654
}{\log_{20}
654}-\frac{180}{\log_{20}180})=134.\)
Status
Protein1
Protein2
d
d1/2
Query variables
4XRG_1
1GKA_1
172
117.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]