Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(8SRB_1)}(2) \setminus P_{f(4IVO_1)}(2)|=158\),
\(|P_{f(4IVO_1)}(2) \setminus P_{f(8SRB_1)}(2)|=19\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:100101101101111010101010010001110100100011001111000111001110000101000101001100101010000001010011101011000101101010100010011111011110001000001011101011100101110100111011011100001111011000111010101101100000011110111100111111001001011011100010000110001100000111110010000110010101110011101111111011101111011011011001011111010111101110100110011001000010010001100101000001001100110010010111100100011001000110111000101100100110100101100110010001000011101000111111000101101011101010010100011000101100110111110010000100100010011010000111000010000101000011001100010011010011101100010100010100000001111010001010011111110100101100111110001101111001100100001101101100010100010010011111110001000011001100000110000110110010011110011000110101010100100111111111111111111010000100010110011001100000100000110010001101001100011001100111011000111001000101101111111111110010011100111001000100101111011111110010010000001100110111111111011000110001110111110110010011111111111011110011010001000011111101010101011100100010011001100000001011111111011100111101111110000101001100110000001010000011111111111010111101101011000000010000000010010010000110010000001101010100001101111100110011010101000100100010001110001011100010011001001111010010110101110001001110001101011110110100011000010111011110110100101010001010110000001011010000101101110011010111101110011001100100010101100010011011110000001111111110010011100100110011111001011010000011111001011101000010000011100001010000100110101011001001011110111011100001100100110101
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1977
}{\log_{20}
1977}-\frac{483}{\log_{20}483})=371.\)
Status
Protein1
Protein2
d
d1/2
Query variables
8SRB_1
4IVO_1
486
315.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]