Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(8CAD_1)}(2) \setminus P_{f(8AVR_1)}(2)|=247\),
\(|P_{f(8AVR_1)}(2) \setminus P_{f(8CAD_1)}(2)|=10\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1101110111111111100110010001000110000011011101001101000001110101000111000101101010110000011011110110010010101000110010000010001111000100011101101111000000010111100111001001011001001000100110001000110001110000011100000001110010001010110001011011110001011000010111110001110001001011110110111001001010111000111011010011100001010110010100001001100110100010010100100101110110101001010000011011001110011000111011111110110000011001100111001101101100011000000101101010010100110010000101000101001000011000011100001000110101010011100101011111000011001110100001111011000100100110010000111000100101110010011010100110100011001001111010111111111101000011001001010000100010100001111100111111101100111001010001000101111010
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{757
}{\log_{20}
757}-\frac{51}{\log_{20}51})=206.\)
Status
Protein1
Protein2
d
d1/2
Query variables
8CAD_1
8AVR_1
261
139
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]