Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(8QEH_1)}(2) \setminus P_{f(1GEZ_1)}(2)|=141\),
\(|P_{f(1GEZ_1)}(2) \setminus P_{f(8QEH_1)}(2)|=44\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1001010001110000110001000100100010111110100100011001011011100000001100110001101101110110010110000000101111001010010010000101100110011100000000000100010001001001101101100001101011001110011010011101101110000000110010010011111110000011100000001000011100110011100001111100001100011000110011010110001011001110111010100001100010010000010111111000110101000011
Pair
\(Z_2\)
Length of longest common subsequence
8QEH_1,1GEZ_1
185
3
8QEH_1,2FKD_1
165
4
1GEZ_1,2FKD_1
134
3
Newick tree
[
8QEH_1:93.51,
[
2FKD_1:67,1GEZ_1:67
]:26.51
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{482
}{\log_{20}
482}-\frac{130}{\log_{20}130})=104.\)
Status
Protein1
Protein2
d
d1/2
Query variables
8QEH_1
1GEZ_1
134
91
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]