Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(7JZT_1)}(2) \setminus P_{f(3VQI_1)}(2)|=92\),
\(|P_{f(3VQI_1)}(2) \setminus P_{f(7JZT_1)}(2)|=96\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:110000001000001001001101110001001000110100111101110110110111001111111111000000100001111110001001101001110100111111001101101100111001111110110010101011011001111101000010100111011101010101111100010010010100100101110010010111101000111101100110010100100001011111111001110111110101110000000001101111100
Pair
\(Z_2\)
Length of longest common subsequence
7JZT_1,3VQI_1
188
4
7JZT_1,9FQP_1
168
6
3VQI_1,9FQP_1
184
4
Newick tree
[
3VQI_1:95.81,
[
7JZT_1:84,9FQP_1:84
]:11.81
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{571
}{\log_{20}
571}-\frac{274}{\log_{20}274})=83.8\)
Status
Protein1
Protein2
d
d1/2
Query variables
7JZT_1
3VQI_1
104
103.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]