Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(8HWA_1)}(2) \setminus P_{f(3BNY_1)}(2)|=124\),
\(|P_{f(3BNY_1)}(2) \setminus P_{f(8HWA_1)}(2)|=30\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:10111010011111001111010000001011011000010001000100011001000010011011101010101001001011001110100011011100011100011001000101000000000010111100000100111100011010000001100010011000000101110000100001011011000100011001010000001010001001110011011110100110010011100110100100001001111100101011000000001001010011101000101000010111101001101100110000111000100111100010100001110011101000110000001101000001010100111001000001001110011101101110010010000001001101000011000101001101100101100000000010000100010110010101111001010000001100111011100100110011001101111010100011000110110010001000010010010111010100010000010111000001110010011100111101000100101001100001000101100110101000000111101110100000111101010100110111010110111000100111100100010110001101110010001000100011100100110000011010000100111001001
Pair
\(Z_2\)
Length of longest common subsequence
8HWA_1,3BNY_1
154
4
8HWA_1,1OWF_1
281
3
3BNY_1,1OWF_1
193
3
Newick tree
[
1OWF_1:13.87,
[
8HWA_1:77,3BNY_1:77
]:54.87
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1105
}{\log_{20}
1105}-\frac{320}{\log_{20}320})=208.\)
Status
Protein1
Protein2
d
d1/2
Query variables
8HWA_1
3BNY_1
266
184
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]