Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(6UBL_1)}(2) \setminus P_{f(8GJG_1)}(2)|=106\),
\(|P_{f(8GJG_1)}(2) \setminus P_{f(6UBL_1)}(2)|=48\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:0100001111011000111010111111110110111001110010011111110001110111011001000101101010001101011100001101010101001011010011010110110101001111111011011101100011110100100111111110101001111101001010111010010101110101001
Pair
\(Z_2\)
Length of longest common subsequence
6UBL_1,8GJG_1
154
3
6UBL_1,8WMF_1
203
4
8GJG_1,8WMF_1
249
3
Newick tree
[
8WMF_1:12.39,
[
6UBL_1:77,8GJG_1:77
]:46.39
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{385
}{\log_{20}
385}-\frac{174}{\log_{20}174})=63.0\)
Status
Protein1
Protein2
d
d1/2
Query variables
6UBL_1
8GJG_1
82
70
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]