Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(8DUN_1)}(2) \setminus P_{f(4AGG_1)}(2)|=86\),
\(|P_{f(4AGG_1)}(2) \setminus P_{f(8DUN_1)}(2)|=56\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:010100011111010001010011010010000101100111011011101010110000010100010101010000101010010110011000100001100110111111110100100011011111100000000011110110001101101010010100110011111000110010011011000110000100100010000100010100011101110
Pair
\(Z_2\)
Length of longest common subsequence
8DUN_1,4AGG_1
142
4
8DUN_1,4ESM_1
175
4
4AGG_1,4ESM_1
171
4
Newick tree
[
4ESM_1:91.08,
[
8DUN_1:71,4AGG_1:71
]:20.08
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{377
}{\log_{20}
377}-\frac{146}{\log_{20}146})=69.7\)
Status
Protein1
Protein2
d
d1/2
Query variables
8DUN_1
4AGG_1
86
70.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]