Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(6NRZ_1)}(2) \setminus P_{f(4TRN_1)}(2)|=123\),
\(|P_{f(4TRN_1)}(2) \setminus P_{f(6NRZ_1)}(2)|=39\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:110000001010100100000100000100100111010100000010100100011000110001110000101011101111001100111011000101011100010111111101110110110001011011110101110001010111001011000110110001111000100000110110000100011000011011000100001101001110010111010111001011010111010101110011111100100110110001100000101011010110100001100100110011011001000100001001101101011110101000101011101010100010011000001100001010010111111001100011110010001100011000100100011001001011001001000100110000110001000110100000110001101100111111111111001111100110100111111100101000
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{803
}{\log_{20}
803}-\frac{269}{\log_{20}269})=146.\)
Status
Protein1
Protein2
d
d1/2
Query variables
6NRZ_1
4TRN_1
184
137
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]