Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(8BCY_1)}(2) \setminus P_{f(5JEU_1)}(2)|=320\),
\(|P_{f(5JEU_1)}(2) \setminus P_{f(8BCY_1)}(2)|=3\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:0001110111101101011100010100100111001000111011011010110010001000010000001001011111101110010010011000101111011001001001010010101001000111000011101110001110101010011110101100111101010100001010100001111111011000101100111001000010101000010100110010010001001101010110000111100000011101001010111111001001011010011010110100101000101110111101001100010000101000111000101010100110110101110111001001000000000100111110111100000100100010111011000101101010100010000111111011011101100111001101100000101000001010011000101010000001110100010001101110111100100000110110110011011110110110101100011011100100100001100110110110000010001001110011100011011110100010110111011111010001000010111001011001011001101000001010000110101000101011001001101001110101000011000101111100000110110111110010010001101011011011100011010101010110100011101110000110101000011101110001110110000110110011001010011001100111110000001110001011010110111010001110000111110001101100100000001001010000100110001111101111101111101000001001000111100000110010101001100010001011
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1028
}{\log_{20}
1028}-\frac{10}{\log_{20}10})=293.\)
Status
Protein1
Protein2
d
d1/2
Query variables
8BCY_1
5JEU_1
378
191
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]