Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(6FXC_1)}(2) \setminus P_{f(2ZTT_1)}(2)|=15\),
\(|P_{f(2ZTT_1)}(2) \setminus P_{f(6FXC_1)}(2)|=66\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:101111110001100001100011110111010011011010100011010101011100111011101110111111000100000001101001101101110111011101101010111011000100010111100111101100001111110011110011010011101101000011100101011000111110111111011000010010010001011101110001010010100110011001101111011011000100111101101101010110011000111111101100110010100111100111101011000111000001011111101101101111110000001011011101111100011011110110100101011101101111100000111001011110000100100111111111010101010111011001010101000011011010001100111111001011001100101010011011001011011010101110110111010010001111001001110101111010101011101100000011100011010111110001011000110010111111001001111100111111000111010111111111111011110000101010110110111101010111110101111111010011011011111011000000110001011001101001101010111110101111100111011110011101000011011000101001011101101110100111010011111100000100000011010010110011010100111010000100011111101011001011110011110001111111001101111100010101110110111101010110001100011110110101111110000100111000011010000001101100001111101111000000000001111110111101101110110101011001001001100010100101111010011100111000010110111010110000011100011001001001001110011101000011100110010011011011100111111111011111011010011100100101000000101100011100101010101001011011101101011111101101111001011110011101110000101111001000001100011100101100010110001100101011110011110010011011001011100110101001011011101010000011100001010101001000100101001011111000101101000111100110111101100000011111001100100111110111101110110011110111100101101111011001010011111101011001110
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1618
}{\log_{20}
1618}-\frac{79}{\log_{20}79})=409.\)
Status
Protein1
Protein2
d
d1/2
Query variables
6FXC_1
2ZTT_1
291
166.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]