Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(8ALZ_1)}(2) \setminus P_{f(6FAF_1)}(2)|=130\),
\(|P_{f(6FAF_1)}(2) \setminus P_{f(8ALZ_1)}(2)|=47\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:110111111110101110100001000111010001100110100100100010011010010010110011001000000110011000100001101000100100100010000011110010001010011011010000001000001101000010001111111001000110000110001101011000010110110101100000001100000000011001101100010101000011100010100110011000001101000010000110000001100000110010000100000010010010010001010111001100000110000010001011101010011001000000111111010100011011000111000011000111101001000101000010011011101010011101110110010100100100101111101001010010010100011010010110001010111010110010000100011010000001111100010011101110101011010001001100111000011
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{846
}{\log_{20}
846}-\frac{261}{\log_{20}261})=160.\)
Status
Protein1
Protein2
d
d1/2
Query variables
8ALZ_1
6FAF_1
201
144
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]