Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(3WKD_1)}(2) \setminus P_{f(5JAQ_1)}(2)|=91\),
\(|P_{f(5JAQ_1)}(2) \setminus P_{f(3WKD_1)}(2)|=64\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:101011110101111111111111000011111011100110011101100011010101001111100000000001010110010100110011010010011101111100011001110001100010001110110010101011100001111010101001110010101001111001110101100111101110000011001001011011001111100001001001010101010101101101111010011100100100011111011001111010101000111010000101100011011001110011111001111111011110100101110100111110101011001010111000101001111010100010001001101000011010010011111100100101001100001010100100011011101000100010110001100111111110100011111010001001110100101000101001001001001110110001001111001000000
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{967
}{\log_{20}
967}-\frac{406}{\log_{20}406})=148.\)
Status
Protein1
Protein2
d
d1/2
Query variables
3WKD_1
5JAQ_1
188
161
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]