Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(8AHB_1)}(2) \setminus P_{f(5FLX_1)}(2)|=95\),
\(|P_{f(5FLX_1)}(2) \setminus P_{f(8AHB_1)}(2)|=71\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:101000000000111001001101111111010101010010101010101001010101100010111111011001101110100010010000110011101010000111000100000101010100110010101101000101110010000000010111000001100010100010010101100000001110111111000010000010001000000111101101111011100100
Pair
\(Z_2\)
Length of longest common subsequence
8AHB_1,5FLX_1
166
3
8AHB_1,8DOX_1
168
3
5FLX_1,8DOX_1
192
4
Newick tree
[
8DOX_1:92.47,
[
8AHB_1:83,5FLX_1:83
]:9.47
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{460
}{\log_{20}
460}-\frac{208}{\log_{20}208})=73.4\)
Status
Protein1
Protein2
d
d1/2
Query variables
8AHB_1
5FLX_1
96
87.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]