Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(8YFQ_1)}(2) \setminus P_{f(2LKZ_1)}(2)|=283\),
\(|P_{f(2LKZ_1)}(2) \setminus P_{f(8YFQ_1)}(2)|=1\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:100110001110010010111101001011011010010110000001001110010110100010000010111001101101011011101111101001000101001011100001011011010010001011101000011001011100000001100110100011100011011101000110000101000110110110110010100010111000010101111011111110101011100000100010001001101010100101010100110010011010110010001110101100010110110101010010101011100101010011010101010011111011001001001000010010001001100011100110001001010000011011100110100011000111100010100101110010111000101010100100101010010101100000010100101111011010000111111000101100101000110000110111111010111101111010111010011011110110100001100110100011111010111111000011011111100110001101010111010011001110011011110111010010010011001000100110010000101011101000101010001001000110010101001001001101100101101101010110011010011111100011010000101000111000010110100111011110011100110010010100011011001110001000001101101101001101001000010011100011000001011000001010110011011101010001000000110000110011110100011111010011001001101001010010110110110010001111010001100100010011001101011000110010100011011110101010001101101111111001101100101001001110000101111010011011001001110101000111010010110001000010010010010001010001100010010101011000100010000111101010010110001010011001001100011111000010011100011001011000101000011001010110111101111100101100010110001000000111100011011011111110000000001101101111010000100011011110100100001111101100010111100011001001111000100010111011111010000110001111011111011101110001100111001101111010100101010000100000100001101110111001010000111000111001001001110100111110011111001000100110010010001001000100100010010001001000100100010010001001000100100010010001001000100100010010001001000100100010010001001000100100010010001001000100100010010001001000110100010000101000010
Pair
\(Z_2\)
Length of longest common subsequence
8YFQ_1,2LKZ_1
284
4
8YFQ_1,8QNQ_1
274
4
2LKZ_1,8QNQ_1
120
3
Newick tree
[
8YFQ_1:15.33,
[
8QNQ_1:60,2LKZ_1:60
]:97.33
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1838
}{\log_{20}
1838}-\frac{95}{\log_{20}95})=455.\)
Status
Protein1
Protein2
d
d1/2
Query variables
8YFQ_1
2LKZ_1
531
279.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]