Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(7YMZ_1)}(2) \setminus P_{f(8XNB_1)}(2)|=97\),
\(|P_{f(8XNB_1)}(2) \setminus P_{f(7YMZ_1)}(2)|=12\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1001111111101110101001011100100101010100011000110110100101110101000001010001111001001010100110101001001111000001001101111011111000101110100010100101111110011010010110110001111101010110110011010010001110000011000011000001000001010010001010000110000100001101111000101101100001010110110110111000100001110010010000011111010010110111010101010011001100100100000010100110010010101010110010110001011101011010010011100000010011011010010000101111100000011100100110100010100111100100000100100111101100100100110000100000110000001101101000010101110011001000000101101111111010011100010111110100100000101010110000110011001000101101011100001111000011001000111000001000010101011101100000000101110110001000100000000011000000011100111011111000111000011110010111001001011011011101011011100110100100001010110010111000010001001010000010011000001100010100010011011010000010011101000000111111110101011011010010001001100111001011011010100001001110100110100111001111110101011000011101111110111001111111001100101111000110000011100100111110011000001100100110001011001100100011110101101100101100010100110101001011110011000011101011000100010100000110101001101110110110110110010001011010110011010001111010110000001100100010010110110010000111010000100011111110001101000100110010001101101001000110100011010011011000010100110000011011011011001010100010111100110100001010001011000111000110000101001000000
Pair
\(Z_2\)
Length of longest common subsequence
7YMZ_1,8XNB_1
109
7
7YMZ_1,3ZGB_1
96
7
8XNB_1,3ZGB_1
119
10
Newick tree
[
8XNB_1:59.76,
[
7YMZ_1:48,3ZGB_1:48
]:11.76
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{2247
}{\log_{20}
2247}-\frac{878}{\log_{20}878})=329.\)
Status
Protein1
Protein2
d
d1/2
Query variables
7YMZ_1
8XNB_1
426
341
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]