Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(8GUB_1)}(2) \setminus P_{f(2BWI_1)}(2)|=169\),
\(|P_{f(2BWI_1)}(2) \setminus P_{f(8GUB_1)}(2)|=19\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1000000000000110000101011110111010010111101111011100111011110100100101101000110010001100110000001110100010000110000010010110111011011100000110001111111110010110010100100011010001101001001000110101101000101100100010010111111111010000000010100001100111011000000111000010101100010011010100001100011000001000111101101111100010001110010110000010010101010000001111001101011010010101001001010011001101100010000110001010011000101101101101010100101001100000111110101100000110101110111110110011011110100100001010101011001101101011000101010001110000111000110000100000001011000011001000000111000000101101110111010100000110100110011110100110110000101110111100100010000100011011011000001001110111001100001101111010001000010001111100000101101001000101100110100110000000000101011100100101101101110110110011010100001100100111101001011001110000111001001000110101101100110001101011101010110011110110000011010001110111010000100110000010100111011000011001101111110000001110001011010110110000001100000111110001111100110000000010010010001011100010111011011110111010010011010001110000001100110010010011100010111001000110
Pair
\(Z_2\)
Length of longest common subsequence
8GUB_1,2BWI_1
188
4
8GUB_1,6LJH_1
178
6
2BWI_1,6LJH_1
162
4
Newick tree
[
8GUB_1:94.78,
[
6LJH_1:81,2BWI_1:81
]:13.78
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1436
}{\log_{20}
1436}-\frac{340}{\log_{20}340})=283.\)
Status
Protein1
Protein2
d
d1/2
Query variables
8GUB_1
2BWI_1
368
237
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]