Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(7XNC_1)}(2) \setminus P_{f(8ZIG_1)}(2)|=89\),
\(|P_{f(8ZIG_1)}(2) \setminus P_{f(7XNC_1)}(2)|=76\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:110010100000001011100000110100001001001111011111010001011111001101010111000110010110000010111101110001010101001011010011001101100111010111101100100000110001010011100010101001110101100110011100001010010100001000110111011011110011111010010111100101011001101001101100011000111111011001100111011011101010011000110011001010011101110000100101111100011100
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{658
}{\log_{20}
658}-\frac{310}{\log_{20}310})=96.4\)
Status
Protein1
Protein2
d
d1/2
Query variables
7XNC_1
8ZIG_1
123
115.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]