Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(5TJL_1)}(2) \setminus P_{f(8ADH_1)}(2)|=83\),
\(|P_{f(8ADH_1)}(2) \setminus P_{f(5TJL_1)}(2)|=97\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:111011101101101010110100001111011111111010101011000101000011101111000111101110010001111001000110001111101011010010110101000100101001011001000011001001101010101000111011011110101110100001100000100010110001010011111110100100100100011110010110111000001000110001001101001100011111111001010111000011001
Pair
\(Z_2\)
Length of longest common subsequence
5TJL_1,8ADH_1
180
3
5TJL_1,1FKN_1
168
4
8ADH_1,1FKN_1
162
3
Newick tree
[
5TJL_1:88.97,
[
1FKN_1:81,8ADH_1:81
]:7.97
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{671
}{\log_{20}
671}-\frac{297}{\log_{20}297})=103.\)
Status
Protein1
Protein2
d
d1/2
Query variables
5TJL_1
8ADH_1
132
119.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]