Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(7WVM_1)}(2) \setminus P_{f(5XYH_1)}(2)|=27\),
\(|P_{f(5XYH_1)}(2) \setminus P_{f(7WVM_1)}(2)|=155\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:010110011111011101010011011010011101100111011011011011100001100101010100000000101010010100011000101101010011010110100
Pair
\(Z_2\)
Length of longest common subsequence
7WVM_1,5XYH_1
182
3
7WVM_1,3HFJ_1
156
3
5XYH_1,3HFJ_1
162
3
Newick tree
[
5XYH_1:88.69,
[
7WVM_1:78,3HFJ_1:78
]:10.69
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{542
}{\log_{20}
542}-\frac{117}{\log_{20}117})=125.\)
Status
Protein1
Protein2
d
d1/2
Query variables
7WVM_1
5XYH_1
161
101.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]