Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(8IQN_1)}(2) \setminus P_{f(5EVB_1)}(2)|=93\),
\(|P_{f(5EVB_1)}(2) \setminus P_{f(8IQN_1)}(2)|=67\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:001010100000011111101000000100001001011101001110010010000010101000000000010000110000100101000000010101010010111011011000100111110111110010000011110001101111000001010010100100000001001001100101101110101110010100000111111011010011100111101100010001000100001111001101011001101001000000000010101000101011110111
Pair
\(Z_2\)
Length of longest common subsequence
8IQN_1,5EVB_1
160
4
8IQN_1,6MOE_1
170
4
5EVB_1,6MOE_1
138
4
Newick tree
[
8IQN_1:86.58,
[
5EVB_1:69,6MOE_1:69
]:17.58
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{577
}{\log_{20}
577}-\frac{271}{\log_{20}271})=86.3\)
Status
Protein1
Protein2
d
d1/2
Query variables
8IQN_1
5EVB_1
109
101
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]