Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(7WSR_1)}(2) \setminus P_{f(3BWZ_1)}(2)|=174\),
\(|P_{f(3BWZ_1)}(2) \setminus P_{f(7WSR_1)}(2)|=24\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:101111000011101000011010000011110000101001101000101011111111111001111011100111101010111101111011001100111100110000001100011100011111111001111000000111001101110100111111011111001111101111001111000110101010111101100001000000010111001110111011011001101011101101110110001010101001111110101101001111110111111110000101011011000100101001110111111011001101111011010001000010001001000101001000011001011011101101110111110111110010100111101111111110001011001011000101111111111100011111111101100111101011001000010000100111101110111011011011110011011010101011011100011111101101110001110111111111101000111000100111111111111111011101011011111100100001111111110111010111011101111101011101011111001100000000
Pair
\(Z_2\)
Length of longest common subsequence
7WSR_1,3BWZ_1
198
6
7WSR_1,8XBQ_1
156
4
3BWZ_1,8XBQ_1
182
4
Newick tree
[
3BWZ_1:10.13,
[
7WSR_1:78,8XBQ_1:78
]:22.13
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{871
}{\log_{20}
871}-\frac{181}{\log_{20}181})=191.\)
Status
Protein1
Protein2
d
d1/2
Query variables
7WSR_1
3BWZ_1
242
150.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]