Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(8BTV_1)}(2) \setminus P_{f(2DER_1)}(2)|=151\),
\(|P_{f(2DER_1)}(2) \setminus P_{f(8BTV_1)}(2)|=11\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:10110011010000010111011101001110001000111000101111111100011001001100000010010111000100110110100111000010110111101111111011101010011001001010010100011100000001011111100111101111000111001110000110010111110101100010100101001111101011101111100011110010100111101100111111
Pair
\(Z_2\)
Length of longest common subsequence
8BTV_1,2DER_1
162
4
8BTV_1,5YXH_1
152
4
2DER_1,5YXH_1
138
2
Newick tree
[
8BTV_1:81.47,
[
5YXH_1:69,2DER_1:69
]:12.47
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{342
}{\log_{20}
342}-\frac{76}{\log_{20}76})=83.6\)
Status
Protein1
Protein2
d
d1/2
Query variables
8BTV_1
2DER_1
112
67
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]