Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(7VMS_1)}(2) \setminus P_{f(6VET_1)}(2)|=380\),
\(|P_{f(6VET_1)}(2) \setminus P_{f(7VMS_1)}(2)|=0\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1101101000101100000111000101000000101110111001011000000001110101001110001010110011100100001010100101110010111000110101111000001101001000000000111011100000101011010110000001001011001111010000010100100010101110001101111001001101011110110110101000101101001000000100011110101001101001011101001011011010010010010110000111100001010001111000000101110001011100010010010010010011110001101001011010001110001010011010000000000101100011110011011011000101101011100101010011101011000100000000101100000110001110111001001010001101101110011001001100100111111010000010101010111001001010011101100111001011011001010011011000100001101100101001111000001100011110011100011001001010111110010100001000111000011101010010111100010010111100111011100110011011011010110010010001100001100010101101010101011011100101011111110101110101111100101011111101100011110001010000000000000001111010100111011110000111110100100011001001111001011100111000000001011010011000000010101001001111100111100010001001011000010010011110101101010001110011001001110001001100110001000001011100110000000000010011001110100101100001001010010100101101000011011010101011011010111001100101011000011110110100100100001001011011101101000011101010111000100111001011011111001111011010110010010010101100100111100000101110001101101100000101001010100010101000011000000011100101110010000000000000000000000000000000101110010101110010000001010100000010001001000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000011011110000001110011010101100111001100110101001000011110010110110101100000101101000001101000010100110111000110110001001011011000011111011000111010100010101110001111100000010111000000111111100010101010010110100000000101110110100101100110010101001111000111111101100111111100001001101101011001111000110100010100101010001011001001110101101101010111001000010001011111000111010000010000110110101110100000100110001011101000000010100100011010001100011010001010100010101011011001001000010011100000000100110001101100011001011011111100000111111011100001011010001011101101001101011000001110111011000110001011011110001101110111110000101101110000110010010000001110010011000011110111010011011110110000111110010100110011101100001110010101110110100010110111100100100010111011100100111110101101111110011011001000110100100001010000000101101110101111011100110101101101011010011001111101111101110110110010110101011101000111111100101101001110110111110101110100111000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000011001001100010000001010011011101010000001011101001100000010011100010011111101000001001110000001000001010110100101101001010001011101110000011100001010001110011111000101000100000100110110101011001100101001000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000100011011101000011000000100011001101110110000110010110011111000110000010001101101011100000000001000100100001000011000101000111011100101001001111110101111110110001000110010000011110011111000011010110000010111110001010011000010001101101100100001000100001000010111001001101000100101000100110001000100110110011001000101100100001100011011111101110101010000001011001101000111111011010110101100110111000001011101101110100100000100001010111000010011000000000000111001000000010000110010011001110111110010001100001001101100110010111101011101001001010100000001001010000001110110011000010111010000110101110100001000110000000001000110111101101001111100011011011010010001001001010011111100010111011011101001110110011111011011001011011101101000010100001000110011100010010010000011001111010001100011100101110011001111101000100001000000000000010010100100000100000000100100000101011001110011100001100110010010111111111101111100100001101001100000001010001000100111100110000101010101111100110110111000111111110000011001010110100010000101010011100001100010011000110001010100010011110011101001000001000001011100101000110111110000110111010101110000111110110111110010011001000100111011111111010011110110010000001001010000110001101011101111110010011100001001110101111111111111011110111010000001000100001101110001001101100001000011001111101100000000100001101000001011111001000000010
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{4987
}{\log_{20}
4987}-\frac{21}{\log_{20}21})=1179\)
Status
Protein1
Protein2
d
d1/2
Query variables
7VMS_1
6VET_1
1209
608
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]