Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(5OLV_1)}(2) \setminus P_{f(8EKN_1)}(2)|=35\),
\(|P_{f(8EKN_1)}(2) \setminus P_{f(5OLV_1)}(2)|=121\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:10000000111111100101010111111111101110111110001001000111011110111111111111010011011001011110111111000110111111000111111100011101001111111011101111101111100010100101000101010110110011110011010111011111111111010111110001101000100100010110010011010011001011110100101101000010010100100110111101001101100101001011100100000101000100100010001011001111111111011110110010110100001111110111111000011011101001001000100110001100001101110000000000
Pair
\(Z_2\)
Length of longest common subsequence
5OLV_1,8EKN_1
156
6
5OLV_1,2OPS_1
172
5
8EKN_1,2OPS_1
138
4
Newick tree
[
5OLV_1:86.02,
[
8EKN_1:69,2OPS_1:69
]:17.02
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1253
}{\log_{20}
1253}-\frac{434}{\log_{20}434})=212.\)
Status
Protein1
Protein2
d
d1/2
Query variables
5OLV_1
8EKN_1
271
203.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]