Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(7VEX_1)}(2) \setminus P_{f(8JJN_1)}(2)|=116\),
\(|P_{f(8JJN_1)}(2) \setminus P_{f(7VEX_1)}(2)|=76\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:111111001011100100000110000101110010000100110110011001001110111010011100011001011100001111011100010001010101101011011111000101000100101100011111010010000101101110111010110001000100000101001000011001000000010001000111111001010000110100011001110000110101001001010000001000111011011111011111110011001000101000011100101001100101010010101011011100000010001100100100101111111000011001001110011001111100011100011101001100101
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{745
}{\log_{20}
745}-\frac{328}{\log_{20}328})=114.\)
Status
Protein1
Protein2
d
d1/2
Query variables
7VEX_1
8JJN_1
150
132
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]